MedicGo
Paired box 6 inhibits cardiac fibroblast differentiation.
Metadata
Journalbiochemical and biophysical research communications2.985Date
2020 Jun 03
4 months ago
Type
Journal Article
Volume
2020-Jul-30 / 528 : 561-566
Author
Feng Y 1, Li M 2, Wang S 3, Cong W 4, Hu G 5, Song Y 6, Xiao H 7, Dong E 8, Zhang Y 9
Affiliation
  • 2. Department of Cardiology and Institute of Vascular Medicine, Peking University Third Hospital, NHC Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing Key Laboratory of Cardiovascular Receptors Research, Beijing, 100191, China. Electronic address: [email protected]
  • 3. Department of Cardiology and Institute of Vascular Medicine, Peking University Third Hospital, NHC Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing Key Laboratory of Cardiovascular Receptors Research, Beijing, 100191, China. Electronic address: [email protected]
  • 4. Key Laboratory of Xinjiang Endemic and Ethnic Diseases, Department of Physiology, School of Medicine Shihezi University, Shihezi, 832000, China. Electronic address: [email protected]
  • 5. Department of Cardiology and Institute of Vascular Medicine, Peking University Third Hospital, NHC Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing Key Laboratory of Cardiovascular Receptors Research, Beijing, 100191, China. Electronic address: [email protected]
  • 6. Department of Cardiology and Institute of Vascular Medicine, Peking University Third Hospital, NHC Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing Key Laboratory of Cardiovascular Receptors Research, Beijing, 100191, China. Electronic address: [email protected]
  • 7. Department of Cardiology and Institute of Vascular Medicine, Peking University Third Hospital, NHC Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing Key Laboratory of Cardiovascular Receptors Research, Beijing, 100191, China. Electronic address: [email protected]
  • 8. Department of Cardiology and Institute of Vascular Medicine, Peking University Third Hospital, NHC Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing Key Laboratory of Cardiovascular Receptors Research, Beijing, 100191, China. Electronic address: [email protected]
  • 9. Department of Cardiology and Institute of Vascular Medicine, Peking University Third Hospital, NHC Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing Key Laboratory of Cardiovascular Receptors Research, Beijing, 100191, China. Electronic address: [email protected]
Doi
PMIDMESH
Abstract
Cardiac fibroblast (CF) differentiation plays a crucial role in cardiac fibrosis, which is a specific manifestation distinguishing pathological cardiac hypertrophy from physiological hypertrophy. The DNA-binding activity of paired box 6 (Pax6) has been shown to be oppositely regulated in physiological and pathological hypertrophy; however, it remains unclear whether Pax6 is involved in CF differentiation during cardiac fibrosis. We found that Pax6 is expressed in the heart of and CFs isolated from adult mice. Moreover, angiotensin II (Ang II) induced the downregulation of Pax6 mRNA and protein expression in fibrotic heart tissue and cardiac myofibroblasts. Pax6 knockdown in CFs promoted the expression of the myofibroblast marker α-smooth muscle actin (α-SMA) and the synthesis of the extracellular matrix (ECM) proteins collagen I and fibronectin. Furthermore, we validated the ability of Pax6 to bind to the promoter regions of Cxcl10 and Il1r2 and the intronic region of Tgfb1. Pax6 knockdown in CFs decreased CXC chemokine 10 (CXCL10) and interleukin-1 receptor 2 (IL-1R2) expression and increased transforming growth factor β1 (TGFβ1) expression, mimicking the effects of Ang II. In conclusion, Pax6 exerts an inhibitory effect on CF differentiation and ECM synthesis by transcriptionally activating the expression of the anti-fibrotic factors CXCL10 and IL-1R2 and repressing the expression of the pro-fibrotic factor TGFβ1. Therefore, maintaining Pax6 expression in CFs is essential for preventing CF differentiation, and provides a new therapeutic target for cardiac fibrosis.
Keywords: Cardiac fibroblast Cardiac fibrosis Differentiation Paired box 6
Fav
Like
Download
Share
Export
Cite
3.0
Biochem Biophys Res Communbiochemical and biophysical research communications
Metadata
LocationUnited States
FromACADEMIC PRESS INC ELSEVIER SCIENCE

No Data

© 2017 - 2020 Medicgo
Powered by some medical students