MedicGo
Spectral fingerprints of correct vestibular discrimination of the intensity of body accelerations.
Metadata
Journalneuroimage5.902Date
2020 Jun 04
4 months ago
Type
Journal Article
Volume
2020-Oct-01 / 219 : 117015
Author
Ertl M 1, Klaus M 2, Mast FW 2, Brandt T 3, Dieterich M 4
Affiliation
  • 2. Department of Psychology, University Bern, Switzerland.
  • 3. German Center for Vertigo and Balance Disorders-IFBLMU (DSGZ), Ludwig-Maximilians-Universität München, Germany; Hertie Senior Research Professor for Clinical Neuroscience, Ludwig-Maximilians-Universität München, Germany.
  • 4. Department of Neurology, Ludwig-Maximilians-Universität München, Germany; German Center for Vertigo and Balance Disorders-IFBLMU (DSGZ), Ludwig-Maximilians-Universität München, Germany; Munich Cluster for Systems Neurology (SyNergy), Munich, Germany.
Doi
PMIDMESH
Abstract
Perceptual decision-making is a complex task that requires multiple processing steps performed by spatially distinct brain regions interacting in order to optimize perception and motor response. Most of our knowledge on these processes and interactions were derived from unimodal stimulations of the visual system which identified the lateral intraparietal area and the posterior parietal cortex as critical regions. Unlike the visual system, the vestibular system has no primary cortical areas and it is associated with separate multisensory areas within the temporo-parietal cortex with the parieto-insular vestibular cortex, PIVC, being the core region. The aim of the presented experiment was to investigate the transition from sensation to perception and to reveal the main structures of the cortical vestibular system involved in perceptual decision-making. Therefore, an EEG analysis was performed in 35 healthy subjects during linear whole-body accelerations of different intensities on a motor-driven motion platform (hexapod). We used a discrimination task in order to judge the intensity of the accelerations. Furthermore, we manipulated the expectation of the upcoming stimulus by indicating the probability (25%, 50%, 75%, 100%) of the motion direction. The analysis of the vestibular evoked potentials (VestEPs) showed that the decision-making process leads to a second positive peak (P2b) which was not observed in previous task-free experiments. The comparison of the estimated neural generators of the P2a and P2b components showed significant activity differences in the anterior cingulus, the parahippocampal and the middle temporal gyri. Taking into account the time courses of the P2 components, the physical properties of the stimuli, and the responses given by the subjects we conclude that the P2b likely reflects the transition from the processing of sensory information to perceptual evaluation. Analyzing the decision-uncertainty reported by the subjects, a persistent divergence of the time courses starting at 188 ​ms after the acceleration was found at electrode Pz. This finding demonstrated that meta-cognition by means of confidence estimation starts in parallel with the decision-making process itself. Further analyses in the time-frequency domain revealed that a correct classification of acceleration intensities correlated with an inter-trial phase clustering at electrode Cz and an inter-site phase clustering of theta oscillations over frontal, central, and parietal cortical areas. The sites where the phase clustering was observed corresponded to core decision-making brain areas known from neuroimaging studies in the visual domain.
Keywords: Cluster-based permutation test Decision-making Inter site phase clustering (ISPC) Inter trial phase clustering (ITPC) Sensation perception transition Theta oscillations Vestibular evoked potentials Vestibular perception Vestibular stimulation
Fav
Like
Download
Share
Export
Cite
5.9
Neuroimageneuroimage
Metadata
LocationUnited States
FromACADEMIC PRESS INC ELSEVIER SCIENCE

No Data

© 2017 - 2020 Medicgo
Powered by some medical students